Maxiset, sélection de modèles et estimation d'images par bandelettes

E. Le Pennec / LPMA / Université Paris Diderot (Paris 7)
F. Autin, J.-M. Loubes, V. Rivoirard,
S. Mallat, Ch. Dossal et G. Peyré

8 Janvier 2007

Maxiset, sélection de modèles, bandelettes

Estimation dans un modèle de bruit blanc gaussien :

 $dY = f(t)dt + \epsilon dW \quad .$

- \checkmark Estimation de f dans des bases : seuillage et sélection de modèles.
- Maxiset : espace adaptée à un estimateur.
- Maxiset pour la sélection de modèle : espace d'approximation de la théorie de l'approximation.
- Mécessité d'avoir une représentation creuse (approximation).
- Images, représentations géométriques et estimation en bandelettes.

Plan

- Estimation par projection.
- Estimation oracle et approximation.
- Estimateur par seuillage et estimateur par sélection de modèles.
- Maxiset et espace d'approximations.
- **Esquisse de preuve**.
- Importance du choix des modèles.
- ID : Signaux , Fourier et ondelettes.
- D : Images , ondelettes et représentations géométriques.
- Estimation d'images par bandelettes.

Estimation par projection

Modèle de bruit blanc :

$$dY = f(t)dt + \epsilon dW \quad .$$

Dans la suite, projection sur un espace de dimension N et calibrage $\epsilon = \frac{1}{\sqrt{N}}$ (lien avec la régression) :

$$Y = f + \frac{1}{\sqrt{N}}W$$

- Propriétés de f : propriétés dans le domaine continu.
- Estimateur par projection : $F = P_{\widehat{m}}Y$ avec \widehat{m} s.e.v. (modèle) à choisir.
- \checkmark Choix de la collection ${\cal M}$ de modèles m .
- Choix du modèle \widehat{m} utilisé dans l'estimateur.
- Critère : risque quadratique

$$E(\|f - F\|^2)$$

Estimation oracle dans une base

■ Base o.n.
$$\{b_n\}_n$$
 et modèles $m = \text{vect}\{b_n\}_{n \in \Gamma}$

.

Décomposition de $Y = f + \frac{1}{\sqrt{N}}W$ dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \frac{1}{\sqrt{N}} \langle W, b_n \rangle \right) b_n \quad .$$

Estimateur F par projection (conservation/élimination de coordonnées) :

$$F = P_m Y = Y_\Gamma = \sum_{n \in \Gamma} \langle Y, b_n \rangle b_n$$

Minimisation du risque quadratique :

$$E(\|f - F\|^2) = \sum_{n \notin \Gamma} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma} \frac{1}{N}$$

• Solution : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$ et $F_O = Y_{\Gamma_0}$.

Problème : demande la connaissance de f ! (Oracle)

Oracle, risque et approximation

Risque quadratique de l'estimateur oracle F_O :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \frac{1}{N}$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \frac{1}{N}|\Gamma_O| \quad .$$

- Compromis entre erreur d'approximation et nombre de termes.
- Théorie de l'approximation :

$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \frac{1}{N}|\Gamma_O| \le C\left(\frac{1}{N}\right)^{\frac{\beta}{\beta+1}}$$

$$\Leftrightarrow \min_{\dim(m) \le M} \|f - P_m f\|^2 \le CM^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta}$$

- Minimax : pour Θ , classe de fonctions, quelle base donne $\Theta \subset \mathcal{A}^{\beta}$ avec β optimal $\left(\left(\frac{1}{N}\right)^{\frac{\beta}{\beta+1}}$ vitesse minimax).
- Maxiset : pour une base fixée, quel est l'ensemble des fonctions estimées avec une vitesse $\left(\frac{1}{N}\right)^{\frac{\beta}{\beta+1}}$? Ici \mathcal{A}^{β} .

Estimateur par seuillage

- Oracle : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$ et $F_O = Y_{\Gamma_0}$.
- Stratégie : garder les grands coefficients.
- Seuillage : $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge T\left(\frac{1}{\sqrt{N}}\right)\}$ et $F_S = Y_{\Gamma_S}$.
- Théorème (Donoho, Johnstone) : Si $T\left(\frac{1}{\sqrt{N}}\right) = \lambda \sqrt{\frac{\log N}{N}}$, alors

$$E(\|f - F_S\|^2) \le C((\log N)E(\|f - F_O\|^2) + \frac{1}{N})$$
$$E(\|f - F_S\|^2) \le C\min_{\Gamma} \|f - f_{\Gamma}\|^2 + \lambda^2 \frac{\log N}{N} |\Gamma| + \frac{1}{N} \quad \text{plus fin.}$$

• Théorème (Maxiset) (*Cohen, DeVore, Kerkyacharian, Picard*) :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\beta}{\beta+1}} \Leftrightarrow f \in V^*_{\frac{2\beta}{\beta+1}}$$
$$\Leftrightarrow \min_{\Gamma} \|f - f_{\Gamma}\|^2 + \lambda^2 T^2 |\Gamma| \le C T^{2\frac{\beta}{\beta+1}}$$
$$\Leftrightarrow \min_{\dim(m) \le M} \|f - P_m f\|^2 \le C M^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta}$$

Seuillage et sélection de modèles

- Risque oracle : $||f f_{\Gamma_O}||^2 + \frac{1}{N}|\Gamma_O|$.
- Analogue empirique : $||Y Y_{\Gamma}||^2 + \frac{\lambda_N}{N}|\Gamma|$.
- Minimisation : $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge \sqrt{\frac{\lambda_N}{N}}\}$ (seuillage) et $F_S = Y_{\Gamma_S}$.
- Cadre de la sélection de modèles avec $pen(m) = \frac{\lambda_N}{N} \dim(m)$:

$$F_S = \underset{P_mY, m \in \mathcal{M}_N}{\operatorname{argmin}} \|Y - P_mY\|^2 + \operatorname{pen}(m)$$

- L'ensemble \mathcal{M}_N des modèles m parcourent l'ensemble des sous-espaces engendrés par les N vecteurs de bases.
- $Inégalité de Kraft satisfaite pour <math>\lambda_N = \lambda \log N :$

$$\sum_{m \in \mathcal{M}_N} e^{-\lambda_N \dim(m)} < +\infty$$

• Théorème (*Barron, Birgé, Massart*) : Pour λ assez grand,

$$E(\|f - F_S\|^2) \le C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda \frac{\log N}{N} \dim(m) + \frac{1}{N}$$

Sélection de modèles

• Théorème (*Barron, Birgé, Massart*) : Si la collection \mathcal{M}_N de modèles m satisfait une inégalité de Kraft pour des coefficients $\lambda_{N,m}$ $\left(\sum_{m \in \mathcal{M}_N} e^{-\lambda_{N,m} \dim(m)} < +\infty\right)$ alors pour $pen(m) = (C_1 + C_2 \lambda_{N,m}) \frac{\dim(m)}{N}$

$$F_S = \underset{P_mY, m \in \mathcal{M}_N}{\operatorname{argmin}} \|Y - P_mY\|^2 + \operatorname{pen}(m)$$

satisfait

$$E(\|f - F_S\|^2) \le C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + (C_1 + C_2 \lambda_{N,m}) \frac{\dim(m)}{N} + \frac{1}{N}$$

• Théorème (Maxiset) : Si $\mathcal{M}_N \subset \mathcal{M}_{N+1}$, $\lambda_{N,m} = \lambda_N$ et $1 \leq \frac{\lambda N}{\lambda_{N/2}} \leq (2 - 2\epsilon)$ alors $E(\|f - F_S\|^2) \leq C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$

$$\Leftrightarrow \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + (C_1 + C_2 \lambda_N) \frac{\dim(m)}{N} \le C \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$
$$\Leftrightarrow \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + T^2 \dim(m) \le C \left(T^2\right)^{\frac{\beta}{\beta+1}}$$
$$\Leftrightarrow \min_{\dim(m) \le M} \|f - P_m f\|^2 \le C M^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta} \quad .$$

Esquisse de preuve

• $f \in \mathcal{A}^{\beta} \implies E(\|f - F_S\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$: sélection de modèles. • Sens inverse :

$$E(\|f - F_S\|^2) \ge C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda_N \frac{\dim(m)}{N}$$
 ???

Non, mais

$$E(\|f - F_S\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

$$\implies \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda_N \frac{\dim(m)}{N} \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

$$\implies f \in \mathcal{A}^{\beta}$$

- 3 cas (par ordre de complexité) :
 - Seuillage (Cohen, DeVore, Picard, Kerkyacharian),
 - Modèles emboîtés,
 - Cas général...

Le cas du seuillage – 1

$$\begin{array}{ll} \bullet & \mathsf{Cl\acute{e}}: \quad \mathop{\mathrm{argmin}}_{P_m f, m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda_N \frac{\dim(m)}{N} = f_T \; \mathsf{avec} \; T^2 = \frac{\lambda_N}{N} & . \\ \|f - F_S\|^2 = \sum_{\substack{|\langle Y, b_k \rangle| \ge T \\ |\langle f, b_k \rangle \ge T/2}} |\langle \frac{1}{\sqrt{N}} W, b_k \rangle|^2 + \sum_{\substack{|\langle Y, b_k \rangle| \ge T \\ |\langle f, b_k \rangle < T/2}} |\langle \frac{1}{\sqrt{N}} W, b_k \rangle|^2 \\ & + \sum_{\substack{|\langle Y, b_k \rangle| < T \\ |\langle f, b_k \rangle| \ge T/2}} |\langle f, b_k \rangle|^2 + \sum_{\substack{|\langle Y, b_k \rangle| < T \\ |\langle f, b_k \rangle| < T/2}} |\langle f, b_k \rangle|^2 \\ \|f - F_S\|^2 \ge \|f - f_{T/2}\|^2 & . \end{array}$$

D'où

$$||f - f_{T/2}||^2 \le E(||f - F_S||^2) \le CT^{\frac{2\beta}{\beta+1}}$$

•

Erreur d'approximation ≠ compromis erreur d'approximation et nombre de coefficients... :

$$||f - f_{T/2}||^2 + T^2 M \ge ||f - f_{T/2}||^2$$

Le cas du seuillage – 2

$$\|f - f_{T/2}\|^2 \le CT^{\frac{2\beta}{\beta+1}} \Rightarrow \|f - f_{T/2}\|^2 + T^2M \le C_{\beta}T^{\frac{2\beta}{\beta+1}} \quad !$$

• Explication :

$$||f - f_{T/2}||^2 \ge \operatorname{Card} \{\operatorname{coeff} \in]T/2, T]\} T^2$$
.

● D'où :

$$\|f - f_{T/2}\|^2 \le CT^{\frac{2\beta}{\beta+1}} \implies \operatorname{Card}\left\{|\operatorname{coeff}|\in]T/2, T\right\} \le CT^{\frac{-2}{\beta+1}}$$

•

On en déduit :

Card { $|\operatorname{coeff}| \in]0, T]$ } $\leq C_{\beta} T^{\frac{-2}{\beta+1}}$.

Ou encore :

$$T^2 M \le C_{\beta} T^{\frac{2\beta}{\beta+1}} \quad \dots$$

Cas des modèles emboîtés - 1

9 \hat{m} : modèle sélectionné qui minimise

$$\|Y - P_m Y\|^2 + \lambda_N \frac{\dim(m)}{N}$$

 m_O : modèle oracle qui minimise

$$||f - P_m f||^2 + \lambda_N \frac{\dim(m)}{4N}$$

٠

•

.

$$||f - P_{\widehat{m}}Y||^2 \ge ||f - P_{m_O}f||^2$$

Première étape :

$$||f - P_{\widehat{m}}Y||^{2} = ||f - P_{\widehat{m}}f||^{2} + ||P_{\widehat{m}}f - P_{\widehat{m}}Y||^{2}$$

= $||f - P_{m_{O}}f||^{2}$
+ $(||P_{\widehat{m}}(f - Y)||^{2} + ||f - P_{\widehat{m}}f||^{2} - ||f - P_{m_{O}}f||^{2})$

Reste à prouver que la parenthèse est positive...

Cas des modèles emboîtés – 2

$$||P_{\widehat{m}}(f-Y)||^2 \ge ||f-P_{m_O}f||^2 - ||f-P_{\widehat{m}}f||^2 \quad ?$$

• Si $\widehat{m} \subset m_O$:

$$||f - P_{m_O}f||^2 - ||f - P_{\widehat{m}}f||^2 \le 0$$

Sinon $\widehat{m} \supset m_O$ et on est ramené à montrer que

$$\|P_{\widehat{m}}(f-Y)\|^2 \ge \|P_{\widehat{m}\setminus m_O}f\|^2$$

Or par définition de
$$\widehat{m}$$
 et m_O

 $\|P_{\widehat{m}\setminus m_O}f\|^2 \leq \frac{1}{4} \frac{\lambda_N}{N} (\dim(\widehat{m}) - \dim(m_O)) \text{ et } \|P_{\widehat{m}\setminus m_O}Y\|^2 \geq \frac{\lambda_N}{N} (\dim(\widehat{m}) - \dim(m_O)) \quad .$

Par inégalité triangulaire :

$$\|P_{\widehat{m}\backslash m_O}(Y-f)\| \ge \|P_{\widehat{m}\backslash m_O}Y\| - \|P_{\widehat{m}\backslash m_O}f\| \ge \frac{1}{2}\sqrt{\frac{\lambda_N}{N}}(\dim(\widehat{m}) - \dim(m_O))$$
$$\|P_{\widehat{m}\backslash m_O}(Y-f)\| \ge \|P_{\widehat{m}\backslash m_O}f\| \quad .$$

Cas des modèles emboîtés – 3

- On a obtenu $\|f P_{\widehat{m}}Y\|^2 \ge \|f P_{m_O}f\|^2$. et donc $\|f - P_{\widehat{m}}Y\|^2 \le CT^{\frac{2\beta}{\beta+1}} \implies \|f - P_{m_O}f\|^2 \le CT^{\frac{2\beta}{\beta+1}}$
- Il reste à montrer que

$$||f - P_{m_O}f||^2 + \frac{1}{4}T^2 \dim(m_O) \le C_\beta T^{\frac{2\beta}{\beta+1}} \dots$$

 \square m_O dépend de T : $m_O(T/2)$ n'est pas optimal pour T mais pour T/2.

$$\|f - P_{m_O(T)}f\|^2 + \lambda_N \frac{\dim(m_O(T))}{4N} \le \|f - P_{m_O(T/2)}f\|^2 + \lambda_N \frac{\dim(m_O(T/2))}{4N}$$
$$\dim(m_O(T)) - \dim(m_O(T/2)) \le \frac{4N}{\lambda_N} (\|f - P_{m_O(T/2)}f\|^2 - \|f - P_{m_O(T)}f\|^2)$$
$$\dim(m_O(T)) - \dim(m_O(T/2)) \le \frac{4N}{\lambda_N} C_\beta (T/2)^{\frac{2\beta}{\beta+1}}$$

• En sommant sur les $T/2^k$, on conclut.

Rq : le seuillage est un cas particulier (somme directe de modèles emboîtés).

Cas général – 1

9 \hat{m} : modèle sélectionné qui minimise

$$\|Y - P_m Y\|^2 + \lambda_N \frac{\dim(m)}{N}$$

٠

 \square m_O : modèle oracle qui minimise pour K suffisament grand

$$||f - P_m f||^2 + \lambda_N \frac{\dim(m)}{KN} \quad .$$

En général, on a pas

$$||f - P_{\widehat{m}}Y||^2 \ge ||f - P_{m_O}f||^2$$
.

On va montrer que

$$E(\|f - P_{\widehat{m}}Y\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}} \implies \|f - P_{m_O}f\|^2 + \lambda_N \frac{\dim(m_O)}{KN} \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

Cas général – 2

Par définition :

$$\|Y - P_{\widehat{m}}Y\|^2 + \lambda_N \frac{\dim \widehat{m}}{N} \le \|Y - P_{m_O}Y\|^2 + \lambda_N \frac{\dim m_O}{N}$$

En passant à l'espérance, on obtient

$$E(\lambda_N \frac{\dim \widehat{m}}{N}) \le \|f - P_{m_O} f\|^2 + \frac{\dim m_O}{N} + \lambda_N \frac{\dim m_O}{N}$$

Par ailleurs,

$$\|f - P_{\widehat{m}}f\|^2 + \lambda_N \frac{\dim \widehat{m}}{KN} \ge \|f - P_{m_O}f\|^2 + \lambda_N \frac{\dim m_O}{KN}$$

On en déduit

$$E(\|f - P_{\widehat{m}}f\|^2) \ge \frac{K - 1}{K} \left(\|f - P_{m_O}f\|^2 - \frac{\dim(m_O)}{(K - 1)N}\right)$$

Rq : $E(\|f - P_{\widehat{m}}f\|^2) \le E(\|f - P_{\widehat{m}}Y\|^2).$

Cas général – 3

On montre alors que

$$E(\|f - P_{\widehat{m}}Y\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}} \implies \frac{\dim(m_O)}{KN} \le C_2\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

- Introduction de la dépendance en N du modèle oracle + une hypothèse de croissance pour λ_N et de structure des modèles donne le résultat , pour K et C_2 assez grand !
- Ceci implique

$$\|f - P_{m_O(N)}f\|^2 \le \left(\frac{K}{K-1}C + C_2\right) \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

Enfin sous l'hypothèse, $\lambda_N \leq 2(1-\epsilon)\lambda_{N/2}$, on démontre

$$\|f - P_{m_O}f\|^2 + \lambda_N \frac{\dim(m_O)}{KN} \le \left(\frac{K}{K-1}C + C_2 + C_3\right) \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

Choix de la collection de modèles

- Trois critères :
 - Espace d'approximation \mathcal{A}^{β} grand,
 - Collection pas trop grande (λ_N au plus logarithmique),
 - Algorithmique pour la minimisation.
- M non linéaire : m sous-espaces engendrées par des vecteurs d'une base o.n.
 Espaces d'approximation non linéaire, $\lambda_N \simeq \log N$ et seuillage.
- M linéaire : m sous-espaces croissants engendrées par des vecteurs d'une base o.n. dans l'ordre.

Espaces d'approximation linéaire, $\lambda_N \simeq C$ et seuillage.

M hautement non linéaire : m sous-espaces engendrés par des vecteurs d'une base choisie parmi un dictionnaire de bases.

Espaces d'approximations hautement non linéaires...

 $\lambda_N \simeq C \log N$ si nb total de vecteurs de base = $\mathcal{O}(N^C)$.

Seuillage et algorithme de recherche de meilleure base si structure...

• Exemples autour des fonctions \mathbf{C}^{α} .

Fonctions \mathbf{C}^{α} et Fourier

- Approche minimax pour les fonctions \mathbf{C}^{α} .
- Fonctions \mathbf{C}^{α} : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\boldsymbol{\beta}=2\alpha)$.
- Approximation dans la base de Fourier :

$$\|f - f_M\|^2 \le CM^{-2\alpha}$$

20

20

Seuillage dans la base de Fourier :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

Vitesse quasi optimale ! (Rq : disparition du \log pour des modèles emboîtés)

• Approche maxiset pour les vitesses $\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$:

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}} \Leftrightarrow f \in \mathcal{A}^{2\alpha} = \mathcal{W}H^{\alpha}$$

avec $\mathcal{W}H^{\alpha}$ version faible de H^{α} .

Minimax-Maxiset :

$$\forall f \in \mathbf{C}^{\alpha}, E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}} \Leftrightarrow \mathbf{C}^{\alpha} \subset \mathcal{W}H^{\alpha}$$

Fonctions \mathbf{C}^{α} par morceaux et Fourier

Fonctions C^{\alpha} par morceaux : vitesse minimax (\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}} (\beta = 2\alpha).
 Approximation dans la base de Fourier (\alpha > 1) :

 $||f - f_M||^2 \le CM^{-2}$.

- Seuillage dans la base de Fourier $(\alpha > 1)$: $E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2}{2+1}}$.
- Maxiset : \mathbf{C}^{lpha} par morceaux $\subset \mathcal{A}^2 = \mathcal{W}H^1$.
- mais \mathbf{C}^{lpha} par morceaux $\not\subset \mathcal{A}^{2lpha} = \mathcal{W} H^{lpha}.$
- ${}_{igsir}$ Pour obtenir la vitesse minimax, ${f C}^lpha$ par morceaux $\subset {\cal A}^{2lpha}.$
- Besoin d'autres bases pour atteindre la vitesse minimax !

Base d'ondelettes 1D de $L^2[0,1]$

Construite à partir d'une fonction d'échelle $\phi(x)$ et d'une ondelette mère $\psi(x)$

qui sont dilatées par 2^j et translatées de $2^j n$

$$\phi_{j,n}(x) = \frac{1}{\sqrt{2^j}} \phi\left(\frac{x - 2^j n}{2^j}\right) , \quad \psi_{j,n}(x) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{x - 2^j n}{2^j}\right)$$

$$\mathbf{B} = \left\{\psi_{j,n}\right\}_{j \in \mathbb{N}, 2^j n \in [0,1)} \text{ est une base orthonormale de } L^2[0,1].$$

Fonctions \mathbf{C}^{α} **et ondelettes**

- Maxisets bien étudiés dans ce cadre (C, DV, K, P, Autin, Rivoirard).
- $\mathcal{A}^{\boldsymbol{\beta}}(\mathrm{Lin}) = B_{2\infty}^{\boldsymbol{\beta}/2}.$
- $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B_{2/(\beta+1),2/(\beta+1)}^{\beta/2} \text{ avec } \mathcal{W}B_{p,q}^{s} \text{ version faible de } B_{p,q}^{s}.$ $\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{2\alpha}(\text{Lin}) = B_{2,\infty}^{\alpha} \subsetneq \mathbf{C}^{\alpha} \text{ par morceaux } \subsetneq \mathcal{A}^{2\alpha}(\text{NonLin}) = \mathcal{W}B_{p,p}^{\alpha} \text{ avec } \mathcal{W}B_{p,p}^{\alpha} \text{ par morceaux } \mathcal{W}B_{p,p}^{\alpha} \text{ avec }$ $p = 2/(2\alpha + 1).$
- Estimation par seuillage dans une base d'ondelettes pour $f \ \mathbf{C}^{\alpha}$ par morceaux :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

- Disparition du facteur $\log N$ si $f \mathbf{C}^{\alpha}$ et utilisation de \mathcal{M} linéaire.
- Clé : approximation

$$\min_{\dim(m) \le M} \|f - P_m f\|^2 \le CM^{-2\alpha}$$
$$\|f - f_M\|^2 \le CM^{-2\alpha}$$

Base d'ondelettes 2D séparables

La famille $\begin{cases} \phi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) &, \quad \psi_{j,n_1}(x_1) \phi_{j,n_2}(x_2) \\ &, \quad \psi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) \end{cases} \\ \\ \text{est une base orthonormée de } L^2[0,1]^2. \end{cases}$

Fonctions \mathbf{C}^{α} et ondelettes **2D**

Pour $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \ (\mathbf{C}^{\alpha} \text{ en dehors de contours } \mathbf{C}^{\alpha}) \ (Korostelev, Tsybakov) : vitesse minimax <math>(\frac{1}{N})^{\frac{\alpha}{\alpha+1}} \ (\boldsymbol{\beta} = \boldsymbol{\alpha}).$

•
$$\mathcal{A}^{\beta}(\operatorname{Lin}) = B_{2,\infty}^{\beta}.$$

- $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B^{\beta}_{2/(2\beta+1),2/(2\beta+1)}$ avec $\mathcal{W}B^{s}_{p,q}$ version faible de $B^{s}_{p,q}$.
- $\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{\alpha}(\operatorname{Lin}) = B_{2,\infty}^{\alpha} \subsetneq \mathcal{A}^{\alpha}(\operatorname{NonLin}) = \mathcal{W}B_{p,p}^{\alpha} \text{ avec } p = 2/(2\alpha + 1).$
- Pour $\alpha > 1$, $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha} \not\subset \mathcal{A}^{\alpha}(\text{NonLin})$.
- ▶ Pour $\alpha > 1$, $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha} \subset \mathcal{A}^{1}(\text{NonLin})$.
- Avec M ondelettes : $||f f_M||^2 \le C M^{-1}$.
- Sesoin de $||f f_M||^2 \le C M^{-\alpha}$ pour le risque minimax.

Éléments géométriques pour les contours

Approximation de $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$:

 M^{-1}

- Approximation linéaire par morceau sur M triangles adaptés : si $\alpha \ge 2$ alors $||f - f_M||^2 \le C M^{-2}$.
- Approximation d'ordre élevé avec M "éléments" adaptés : $\|f - f_M\|^2 \le C M^{-\alpha}$.
- Pas de bases et optimisation difficile.

Curvelets

Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$.

Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ alors avec M curvelets :

$$||f - f_M||^2 \le C (\log M)^3 M^{-2}$$
 si $\alpha \ge 2$.

- **9** Quasi optimal pour $\alpha = 2$.
- En pratique, estimation dans l'espace des coefficients.
- Discrétisation complexe et difficultés pour obtenir des bases orthogonales ou des bases de Riesz.

Bandelettes

- Image $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simple par morceaux.
- ${}$ Déformation locale \implies singularité verticale/horizontale .
- Bandelettes locales : préimage d'une base adaptée.
- Base de bandelettes définie par :
 - une segmentation dyadique et
 - une géométrie dans chaque carré.
- **D** Théorème : Si f est $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$, alors, dans la meilleure base,

 $||f - f_M||^2 \le C(\log M) M^{-\alpha} \quad .$

Discrétisation de la géométrie donne une famille de bases avec beaucoup de vecteurs communs et un algorithme de recherche de meilleure base.

Estimation géométrique

Contrôle polynomial en fonction de N sur le nombre total de bandelettes.
 Sélection de bandelettes :

$$F_S = \operatorname{argmin} \|Y - P_{\mathcal{M}}Y\|^2 + \lambda \frac{\log N}{N} \operatorname{dim}(\mathcal{M})$$

avec \mathcal{M} qui contient les sous-espaces des bases de bandelettes.

- Minimisation à 2 étages :
 - à base fixée, seuillage (facile),
 - recherche de meilleure base (difficile).
- Structure hiérarchique de la partition et additivité de la fonction à minimiser : algorithme de meilleure base de Wickerhauser (CART).
- Exploration exhaustive des géométries dans chaque carré.
- Quasi optimalité : si $f \in \mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ alors

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\alpha}{\alpha+1}}$$

• Maxiset :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\alpha}{\alpha+1}} \Leftrightarrow f \in \mathcal{A}^{\alpha} \Leftrightarrow \forall M, \exists \mathcal{B}, \|f - f_M\|^2 \le CM^{-\alpha}$$

Bruitée (20,19 dB)

Bandelettes $(30,29 \, dB)$

Ondelettes $(28, 21 \, dB)$

Bruitée (20,19 dB)

Bandelettes $(30,29 \, \mathrm{dB})$

Ondelettes (28, 21 dB)

Bruitée

Bandelettes

Ondelettes

Bruitée (20,19 dB)

${\tt Bandelettes}~(27,\!68\,{\rm dB})$

Ondelettes $(25,79 \, dB)$

Bruitée

Bandelettes

Ondelettes

Un peu plus d'image?

OUI ou NON

Conclusion

- Pour la sélection de modèles, maxiset = espace d'approximation.
- Importance d'avoir une représentation adaptée.
- Bandelettes : une représentation adaptée à la géométrie des images $\mathbf{C}^{lpha} \mathbf{C}^{lpha}$.
- Passage au modèle d'échantillonnage/norme empirique se fait bien.
- Problèmes ouverts :
 - Caractérisation fonctionnelle du maxiset de l'estimateur en bandelettes ?
 - Maxiset pour des pénalisations différentes $(l^1,...)$

Vers des images plus nature

- Modèle $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simpliste.
- Les contours sont flous :

- Pas un problème pour les bandelettes.
- La géométrie vie à plusieurs échelles :

 Comment incorporer une géométrie multiéchelle ?
 Comment éviter les effets de bords sans perdre l'orthogonalité ?

Retour vers les ondelettes

- Ondelettes : bonne représentation multiéchelles.
- Analogie avec le système visuel.
- Existence de régularité pour les coefficients d'ondelettes.
- Comment l'exploiter ?
- Utilisation du contexte dans JPEG 2000.
- Edgeprint (Vetterli, Dragotti, Baraniuk) : modélisation explicite dans le contexte du codage.
- Bandelettes sur les coefficients?

Base locale de bandelettes

- Bandelettes 2G (*Peyré*) : Changement de base orthogonale adapté à la géométrie sur les coefficients d'ondelette.
- Multirésolution d'espaces d'approximations polynomiales par morceaux.
- Base des compléments orthogonaux de ces espaces (Alpert).
- Image des ondelettes par ce changement de bases : bandelettes 2G.

Base de bandelettes 2G

- Base de bandelettes :
 - segmentation dyadique des sous-bandes,
 - géométrie dans chaques carrés.
- Algorithme d'optimisation par programmation dynamique (CART) de

$$||f - f_M||^2 + T^2 M$$

Théorème : Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$, alors, dans la meilleure base,

 $\|f - f_M\|^2 \le CM^{-\alpha}$

Estimation en bandelettes 2G

Contrôle polynomial en fonction de N sur le nombre total de bandelettes.
 Estimation par sélection de modèle :

$$F_S = \operatorname{argmin} \|Y - P_{\mathcal{M}}Y\|^2 + \lambda \frac{\log N}{N} \operatorname{dim}(\mathcal{M})$$

avec ${\mathcal M}$ qui parcourt les sous-espaces d'une famille de bases de bandelettes 2G.

Quasi optimalité : si
$$f \in \mathbf{C}^{lpha} - \mathbf{C}^{lpha}$$
 alors

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\alpha}{\alpha+1}}$$

Maxiset :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\alpha}{\alpha+1}} \Leftrightarrow f \in \mathcal{A}^{\alpha} \Leftrightarrow \forall M, \exists \mathcal{B}, \|f - f_M\|^2 \le CM^{-\alpha}$$

• Conjecture : $f \in \mathcal{A}^{\beta} \Leftrightarrow \exists \mathcal{B}, \forall M, \|f - f_M\|^2 \leq CM^{-\beta}$!

Expérimentation numérique en cours...

Conclusion

- Pour la sélection de modèles, maxiset = espace d'approximation.
- Importance d'avoir une représentation adaptée.
- Bandelettes : des représentations adaptées à la géométrie des images $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}.$
- Passage au modèle d'échantillonnage/norme empirique se fait bien.
- Problèmes ouverts :
 - Caractérisation fonctionnelle du maxiset de l'estimateur en bandelettes ?
 - Maxiset pour des pénalisations différentes (l¹,...)